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The spatial evolution of three-dimensional disturbances in an attachment-line bound-
ary layer is computed by direct numerical simulation of the unsteady, incompressible
Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic
sources that involve unsteady suction and blowing through the wall. Various harmonic-
source generators are implemented on or near the attachment line, and the disturbance
evolutions are compared. Previous two-dimensional simulation results and nonparallel
theory are compared with the present results. The three-dimensional simulation results
for disturbances with quasi-two-dimensional features indicate growth rates of only a few
percent larger than pure two-dimensional results; however, the results are close enough
to enable the use of the more computationally e�cient, two-dimensional approach. How-
ever, true three-dimensional disturbances are more likely in practice and are more stable
than two-dimensional disturbances. Disturbances generated o� (but near) the attachment
line spread both away from and toward the attachment line as they evolve. The evolu-
tion pattern is comparable to wave packets in 
at-plate boundary-layer 
ows. Suction
stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes
these instabilities; these results qualitatively agree with the theory. Furthermore, suction
stabilizes the disturbances that develop o� the attachment line. Clearly, disturbances that
are generated near the attachment line can supply energy to attachment-line instabilities,
but suction can be used to stabilize these instabilities.

Some of these results have been originally presented as AIAA Paper No. 94-0826 at
the \AIAA 32nd Aerospace Sciences Meeting & Exhibit, January 10-13, 1994/Reno, NV"

1



1. Introduction

Many instability mechanisms can occur that cause the breakdown of laminar 
ow to

turbulence on swept wings; however, this discussion will focus on those disturbances that

evolve near the attachment-line region (near the leading edge). Turbulent contamination,

which results from turbulence at a fuselage/wing juncture, can travel out over the wing

and cause laminar 
ow on the wing to become turbulent. To prevent this contamination,

devices such as the Gaster bump (1965) or suction (see Pfenninger, 1977), implemented

near the wing root, can halt the turbulent attachment-line boundary layer from sweeping

out over the entire wing.

Although the problem of turbulent contamination can be avoided by using a mechan-

ical device, a Reynolds number must exist beyond which disturbances that are generated

by either surface imperfections or particulates on the wing, coupled with noise, will even-

tually cause transition. Gaster (1967) �rst examined the small-amplitude disturbance

problem by using acoustic excitation along the attachment line of a swept cylinder model.

Gaster generated sine waves with various frequencies that were detected in the 
ow by

a hot-�lm gauge on the attachment line. He noted that the recorded oscillations had

preferred frequency bands that changed with tunnel speed and that this behavior was

reminiscent of traveling-wave instabilities. From his measurements, he concluded that

the small-amplitude disturbances in an attachment-line boundary layer were stable for

momentum-thickness Reynolds numbers R� below 170. Later, Cumpsty & Head (1969)

experimentally studied large-amplitude disturbances and turbulent 
ow along the attach-

ment line of a swept-wing model. Without arti�cially tripping the boundary-layer insta-

bilities, they observed that laminar 
ow is stable to small-amplitude disturbances up to

R� ' 245 (which corresponds to the top speed of the tunnel). At the same time, Pfenninger

& Bacon (1969) used a wing swept to 45o to study the attachment-line instabilities in a
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wind tunnel capable of reaching speeds su�cient to obtain unstable disturbances. With

hot wires, they observed regular sinusoidal oscillations with frequencies comparable to the

most unstable two-dimensional modes of theory; these modes caused transition to occur

at about R� ' 240. A continued interest in the transition initiated near the attachment

line of swept wings led Poll (1979, 1980) to perform additional experiments with the swept

circular model of Cumpsty & Head (1969). Like Pfenninger & Bacon (1969), Poll observed

disturbances that ampli�ed along the attachment line. He noted that no unstable modes

were observed below R� = 230.

With nonparallel stability theory, Hall, Malik, & Poll (1984) studied the linear stability

of the attachment-line boundary-layer 
ow called swept Hiemenz 
ow, which is shown in

�gure 1. This three-dimensional base 
ow is a similarity solution of the Navier-Stokes

equations; hence, its use is advantageous in stability analyses. With a nonparallel theory,

Hall el al. (1984) determined neutral curves with and without steady suction and blowing

and demonstrated that the attachment-line boundary layer can theoretically be stabilized

(destabilized) with small amounts of suction (blowing). Theo�lis (1993a) performed a

direct numerical simulation, based on Fourier-series assumptions, of the two-dimensional

linear disturbances propagating along the attachment line of swept Hiemenz 
ow. The

direct numerical simulation results agreed with the nonparallel theory of Hall et al. (1984)

near the upper branch of the neutral curve; however, the computations predicted growing

modes in a region of theoretical decay near the lower branch. Theo�lis (1993a) attributed

the disagreement between computational and theoretical results near the lower branch of

the neutral curve to the lack of direct numerical simulation grid resolution. The recent

spatial direct numerical simulation results of Joslin (1994) for swept Hiemenz 
ow indicate

good agreement (less than 2 percent result di�erences) with the nonparallel theory of Hall

et al. (1984) near both the upper and lower branches.

With a weakly nonlinear theory and computations based on Fourier-series, Hall &
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Malik (1986) discovered a region of subcritical instability growth, which is shown in �gure

2 with the experiments of Pfenninger & Bacon (1969) and Poll (1979, 1980) and the

neutral curve of Hall et al. (1984). Consistent with the Pfenninger & Bacon (1969)

experiments, large-amplitude disturbances became unstable before the linear critical point

(subcritical). Furthermore, near the lower branch of the neutral curve, Hall & Malik (1986)

observed equilibrium states for large-amplitude disturbances. Both Jim�enez et al. (1990)

and Theo�lis (1993b) did not �nd this region of subcritical growth with temporal direct

numerical simulation codes. Jim�enez et al. (1990) contended that this subcritical growth

region did not exist. Contrary to the �ndings of Jim�enez et al. (1990) and Theo�lis

(1993b), the nonlinear spatial direct numerical simulation results of Joslin (1994) showed

both subcritical growth near the upper branch and nonlinear equilibrium states near the

lower branch. These results are consistent with both the weakly nonlinear theory and the

experimental results. It is clear from the results of Joslin (1994) that the input disturbance

amplitude in the work of Theo�lis (1993b) was too small to generate a subcritically growing

disturbance and that a di�erence 
ow-acceleration pressure gradient was used by Jim�enez

et al. (1990), resulting in a decaying mode instead of a subcritically growing mode.

Hall & Seddougui (1990) studied oblique waves and their interaction in attachment-

line 
ow at the large Reynolds number limit. They note that close to the attachment line a

small band of destabilized oblique modes appear, interact with the two-dimensional mode,

and cause a breakdown of the two-dimensional mode. In addition, they note that oblique

modes become less important away from the attachment line and that low-frequency modes

become the dominant mechanism (i.e., stationary cross
ow modes). More recently, Crimi-

nale, Jackson, & Lasseigne (1994) have performed an analysis of three-dimensional inviscid

stagnation-point 
ow by solving an initial-value problem. They show that unstable distur-

bances can be found for a 
ow expansion away from the stagnation point in one transverse

direction and toward the stagnation point in the other transverse direction. They hypoth-
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esize that the three-dimensionality of the 
ow might overcome the stabilizing e�ects of

viscosity, rendering the inviscid instability trends.

The two-dimensional theories of Hall et al. (1984) and Hall & Malik (1986) have

demonstrated that nonparallel 
ow and nonlinear disturbances expand the conventional

quasi-parallel neutral-curve region. These results have been con�rmed by the two-

dimensional spatial direct numerical simulations of Joslin (1994). However, the true phys-

ical 
ow involves three-dimensional disturbances that are imbedded in a three-dimensional

boundary-layer 
ow. The relative growth or decay of three-dimensional linear and nonlin-

ear disturbances must be understood to properly interpret the experimental results (some

of which are shown in �gure 2). Furthermore, the instability of the attachment-line 
ow to

three-dimensional disturbances must be understood to formulate theories and implement

devices to prevent instability growth.

The goal of the present study is to compute the evolution of three-dimensional in-

stabilities in an attachment-line boundary-layer 
ow. A three-dimensional spatial direct

numerical simulation approach is developed to study the instabilities. These simulations

di�er from previous computational studies because the present numerical formulation does

not assume periodicity in the 
ow and does not limit the form of the disturbances. Spe-

ci�c regions in the parameter space are investigated with the direct numerical simulation

to verify the nonparallel theory of Hall et al. (1984) for in�nitesimal three-dimensional

disturbances. Furthermore, the three-dimensional results are compared with the two-

dimensional simulation results, and the e�ects of steady suction and blowing on the three-

dimensional instability growth are evaluated. Disturbances are generated o� (but near)

the attachment line, and the disturbance evolutions are computed and compared with

quasi-two-dimensional results.
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2. Problem formulation

For the problem at hand, the velocities ~u = (~u; ~v; ~w) and the pressure ~p are solutions

of the incompressible, unsteady Navier-Stokes equations. The instantaneous velocities ~u

and the pressure ~p may be decomposed into base and disturbance components as

~u(x; t) = U (x) + u(x; t) and ~p(x; t) = P (x) + p(x; t) (1)

where the base 
ow is given by the velocities U = (U; V;W ) and the pressure P , and

the disturbance component is given by the velocities u = (u; v;w) and the pressure p. A

Cartesian coordinate system x = (x; y; z) is used in which x is aligned with the attachment

line, y is wall normal, and z corresponds to the direction of 
ow acceleration away from

the attachment line.

Originally described by Hall et al. (1984), the base 
ow referred to as a swept Hiemenz


ow is a similarity solution to the incompressible three-dimensional Navier-Stokes equa-

tions. Shown in �gure 1, the 
uid comes straight down toward the wall; it turns away from

the attachment line into the �z directions to form a boundary layer. In the x direction, the


ow is uniform. In the absence of sweep, Uo is equal to 0 and the 
ow reduces to the two-

dimensional stagnation 
ow �rst described by Hiemenz (1911). A boundary-layer thickness

is de�ned in the yz-plane as � =
p
�L=Wo; a Reynolds number, as R = Uo�=� = 2:475R�;

and a transpiration constant, as � = Vo
p
L=�Wo, where � = 0 for the zero-suction case,

Uo; Vo;Wo are velocity scales, and L is the length scale in the 
ow-acceleration direction

z. If the attachment line is assumed to be in�nitely long, the velocities become functions

of z and y only, and the similarity solution can be found.

The equations for the base 
ow were given by Hall et al. (1984). If the solutions of

these equations are nondimensionalized with respect to the attachment-line velocity Uo,

the boundary-layer thickness �, and the kinematic viscosity �, then the base 
ow is

U(Y ) = Û(Y ); V (Y ) =
1

R
V̂ (Y ); and W (Y;Z) =

Z

R
Ŵ (Y ) (2)
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where fX;Y;Zg = fx; y; zg=� and the hats refer to similarity variables. Note that in the

character of this similarity solution, U and V are uniform along the attachment line and

W grows linearly with distance from the attachment line.

As Arnal (1994) demonstrated, the velocity pro�les represented by equation (2) on the

attachment line have properties which are very similar to Blasius 
at-plate 
ow (except

Blasius 
ow is slightly less stable than attachment-line 
ow). Therefore, we should expect

viscous traveling-wave instabilities which are comparable to what we �nd in 
at-plate 
ow.

Namely, the instability can be viewed as an instability of the vorticity distribution, where

the slight displacement of the voriticity can alter the process of production, convection,

and di�usion of vorticity, which may tend to more and more alter the process and lead

eventually to turbulence. However, the process is not clear o� of the attachment line.

Unlike two-dimensional 
ow problems, the divergence of the velocity components in the

potential 
ow can in
uence the velocity pro�le shape and corresponding stability properties

of the 
ow.

For the disturbance portion of equation (1), the three-dimensional incompressible

Navier-Stokes equations are solved in disturbance form as

@u

@t
+ (u � r)u+ (U � r)u+ (u � r)U = ��p+

1

R
r2u (3)

with the continuity equation and boundary conditions

u = 0 at Y = 0 and u! 0 as Y !1 (4)

Disturbances are forced by harmonic-source generators, which involve suction and

blowing at the wall and are assumed to decay to zero in the far-�eld. At the in
ow,

solutions of the base 
ow are imposed, and the bu�er-domain technique is employed as the

out
ow condition.
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3. Numerical methods of solution

In the attachment-line (X) direction, fourth-order central �nite di�erences are used

for the pressure equation and sixth-order compact di�erences are used for the momentum

equations in the interior of the computational domain. At the boundary and near-boundary

nodes, fourth-order forward and backward di�erences are used. The discretization yields

a pentadiagonal system for the �nite-di�erence scheme and a tridiagonal system for the

compact-di�erence scheme. The approximations can be solved e�ciently by appropriate

backward and forward substitutions.

In both the wall-normal (Y ) and 
ow-acceleration (Z) directions, Chebyshev series

are used to approximate the disturbances at Gauss-Lobatto collocation points. A Cheby-

shev series is used in the wall-normal direction because it provides good resolution in the

high-gradient regions near the boundaries. Furthermore, the use of as few grid points as

possible results in signi�cant computational cost savings. In particular, the use of the

Chebyshev series enables an e�cient pressure solver. Because this series and its associated

spectral operators are de�ned on [-1, 1] and the physical problem of interest has a trun-

cated domain [0; ymax] and [�zmax; zmax], transformations are employed. Furthermore,

stretching functions are used to cluster the grid near both the wall and the attachment

line. For further details on the properties and the use of spectral methods, refer to Canuto

et al. (1988).

For time marching, a time-splitting procedure was used with implicit Crank-Nicolson

di�erencing for normal di�usion terms; an explicit three-stage Runge-Kutta (RK) method

by Williamson (1980) was used for the remaining terms. For details of the time-marching

procedure, refer to Joslin, Streett, & Chang (1992). The solution is determined on a

staggered grid. The intermediate RK velocities are determined on Gauss-Lobatto points.

The pressure is found by solving the Poisson equation on Gauss points and is then spectrally
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interpolated onto Gauss-Lobatto points. Then, the full RK stage velocities are obtained

from on Gauss-Lobatto points with the updated pressure. The above system is solved

three consecutive times to obtain full time-step velocities.

To satisfy global mass conservation, an in
uence-matrix method is employed and is

described in some detail by Streett & Hussaini (1991), Danabasoglu, Biringen, & Streett

(1990, 1991), and Joslin et al. (1992, 1993). For boundary-layer 
ow, four Poisson-Dirichlet

problems are solved for the discrete mode that corresponds to the zero eigenvalue of the

system; single Poisson-Neumann problems are solved for all other modes.

To e�ciently solve the resulting Poisson problem, the tensor-product method of Lynch

et al. (1964) is used. The discretized form of the Poisson equation for the pressure is

�
Lx 
 I 
 I + I 
 Ly 
 I + I 
 I 
 Lz

�
p = R (5)

where p is the desired pressure solution; the right side of the equation R results from the

time-splitting procedure; I is the identity matrix; Lx is the attachment-line-directed central

�nite-di�erence operator; Ly and Lz are the wall-normal-directed and 
ow-acceleration-

directed spectral operators; and 
 infers a tensor product. By decomposing the operators

Ly and Lz into their respective eigenvalues and eigenvectors, we �nd

Ly = Q�yQ
�1 and Lz = S�zS

�1 (6)

where Q and S are the eigenvectors of Ly and Lz, Q
�1 and S�1 are inverse matrices of Q

and S, and �y and �z are the eigenvalues of Ly and Lz. The solution procedure reduces

to the following sequence of operations to determine the pressure p:

p� = (I 
Q�1 
 S�1)R

py = (Lx 
 I 
 I + I 
 �y 
 I + I 
 I 
 �z)
�1p�

p = (I 
Q
 S)py (7)
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Because the number of grid points in the attachment-line direction is typically an order of

magnitude larger than the wall-normal and 
ow-acceleration directions, the operator Lx

is much larger than both Ly and Lz. Because Lx is large and has a sparse pentadiagonal

structure and because �y and �z in
uence the diagonal only, an LU decomposition is

performed for the second stage of equation (7) once, and forward and backward solves are

performed for each time step of the simulation. The �rst and third steps of the pressure

solve for equation (7) involve matrix multiplications.

To obtain the attachment-line-directed operator Lx, central �nite di�erences are used.

To �nd the wall-normal Ly and 
ow-acceleration Lz operators, the following matrix oper-

ations are required:

Ly = IG
GL
Dy

~DyI
GL

G
and Lz = IG

GL
Dz

~DzI
GL

G
(8)

where Dy is a spectral wall-normal derivative operator for the stretched grid; Dz is the

spectral, derivative operator that is grid clustered in the attachment-line region; and ~Dy

and ~Dz are the derivative operators with the �rst and last rows set to 0. The interpolation

matrix IG
GL

operates on variables at Gauss-Lobatto points and transforms them to Gauss

points; the interpolation matrix IGL
G

performs the inverse operation. The spectral operators

are described in detail by Canuto et al. (1988) and Joslin et al. (1993).

The operators fLx; Ly; Lzg, the eigenvalue matrices f�y;�zg, the eigenvector matrices

fQ;Q�1; S; S�1g, and the in
uence matrix are all mesh-dependent matrices and must be

calculated only once.

The bu�er-domain technique introduced by Streett & Macaraeg (1989) is used for

the out
ow condition. As shown by Joslin et al. (1992) for the 
at-plate boundary-layer

problem, a bu�er length of three disturbance wavelengths is adequate for traveling waves.

The disturbances are assumed to be from the discrete spectrum, which exponentially decay

with distance from the wall. Both at the wall and in the far �eld, homogeneous Dirichlet
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conditions are imposed. Homogeneous Dirichlet and Neumann conditions have been used

in the 
ow-accelerated direction. With either condition, the disturbance will develop in the

same manner along the attachment line, provided that the boundaries are su�ciently far

from the attachment-line region. The base 
ow is used for the in
ow boundary condition.

Disturbances are forcibly imposed into the boundary layer by unsteady suction and

blowing with the wall-normal velocity component through the wall (harmonic-source gen-

erators). An equal amount of mass injected by blowing is extracted by suction so that zero

net mass is added to the boundary layer. A similar technique has been used by (among

others) Danabasoglu, Biringen, & Streett (1991) in there study of periodic control by

suction and blowing. Although the disturbances may be generated by random frequency

input, the disturbances of interest here are forced with known frequencies. Essentially,

this disturbance generator is an alteration to the no-slip boundary conditions which are

conventionally used for the wall condition in a viscous 
ow problem.

4. Results

The spatial evolution of three-dimensional disturbances is computed by direct numer-

ical simulation, which involves the solution to the unsteady, nonlinear, three-dimensional

Navier-Stokes equations. The simulations are performed on a grid of 661 points (' 60

points per wavelength) along the attachment line, 81 points in the wall-normal direction,

and 25 points in the 
ow-acceleration direction. The far-�eld boundary is located at 50�

from the wall, the computational length along the attachment line is 216:56�, and the


ow-acceleration boundaries are located �100� from the attachment line. For the time-

marching scheme, the disturbance wavelength was divided into 320 time steps per period.

The total Cray Y-MP time for a simulation with a single processor was approximately

25 hrs (with a single processor). As shown in �gure 3, the parameter regions of interest

consist of a region of linear instability growth, a region of linear instability decay (which

11



is the the region of nonlinear, subcritical instability growth identi�ed by Hall & Malik,

1986), the upper and lower branches of the neutral curve, and the critical region predicted

by the nonparallel theory of Hall et al., 1984.

This study begins by validating the simulation results for in�nitesimal disturbances

with hydrodynamic stability theory with the special case of a frozen base 
ow. Nonparallel

terms (i.e., the wall-normal base 
ow components) for the equations are included in the

simulation and the instabilities are compared with the frozen-
ow instability properties.

Next, aspects of instability development on and near the attachment line are compared

for quasi-two-dimensional and point-source harmonic source generators with the theory of

Hall et al. (1984). The e�ects of suction on the instabilities are documented. Conclusions

are drawn and the importance of this study on the global problem of attachment-line

instability is ascertained. Finally, future directions for continuing the study of the problem

of instabilities in attachment-line boundary layers are suggested.

4.1 Region of disturbance decay

The nonparallel theory of Hall et al. (1984) outlined the stable and unstable regions

for in�nitesimal disturbances. In a segment of the subcritical region, large-amplitude

disturbances were found by Hall & Malik (1986) to exhibit nonlinear ampli�cation. The

two-dimensional spatial direct numerical simulation study by Joslin (1994) con�rmed this

subcritical growth phenomenon. In this section, the Reynolds number R = 570 and the

frequency ! = 0:1249, which are parameters in the subcritical region, are used in the

study of the evolution of small-amplitude three-dimensional disturbances. The results are

compared with linear stability theory and previous two-dimensional results.

To compare with the two-dimensional theory and previous simulations, a quasi-two-

dimensional disturbance is initiated in the three-dimensional 
ow. At best, this disturbance

is an approximation to a true two-dimensional instability mode. To generate this two-
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dimensional disturbance, a harmonic source is used that is elongated (�44:2 < Z < 44:2)

in the 
ow-acceleration direction. This disturbance-forcing method is comparable to using

a vibrating ribbon to generate two-dimensional disturbances for wind-tunnel experiments.

The qualitative features of a disturbance generated by the harmonic source with a small

amplitude (e.g., A = 0:001 percent) are shown in �gure 4. The disturbance evolution is

viewed from above and along the attachment line. The wave travels along the attachment

line without signi�cant three-dimensional features. However, because the base 
ow is

accelerating away from the attachment line (in the �Z directions), wave spreading occurs

with distance from the harmonic source, and the rate of spreading increases with distance

along the attachment line.

Quasi-two-dimensional simulation results for both a quasi-parallel base 
ow (i.e.,

V = 0) and the full swept Hiemenz 
ow are compared with linear stability theory. The

results are shown in �gure 5. The amplitude, decay rate, and wavelength of disturbances

simulated with the quasi-parallel 
ow are in very good quantitative agreement with the

two-dimensional linear stability theory results. This agreement suggests that in this param-

eter region the elongated harmonic source can approximate a two-dimensional disturbance

along the attachment line. Figure 5 also shows that the full swept Hiemenz base 
ow

destabilizes disturbances due to the inclusion of the V velocity component. This desta-

bilizing feature is consistent with the results reported in the two-dimensional nonparallel

studies by Hall et al. (1984) and Joslin (1994).

To further demonstrate the two-dimensional nature of the disturbance generated with

the elongated harmonic source, �gure 6 shows the attachment-line results compared with

results at a distances 13� and 35� o� the attachment line. The evolution patterns are

identical out to near 35�, where small deviations are observed. This implies that the

elongated harmonic source is generating primarily two-dimensional waves and that the

attachment-line velocity component is dominant (i.e., the amplitude of the w velocity

13



component of the disturbance is too small to modify the dominant u component). Figure

7 shows u and w velocity pro�les at Z = 13� and 35�. Although only small di�erences are

found with u velocity components, the w velocity components are in strong disagreement.

Note that the w velocity is an order of magnitude smaller than the u velocity, which is the

reason for the good agreement between the u velocity on the attachment line with the same

components o� the attachment line. Furthermore, although no symmetry assumption is

made, 
ow symmetry about the attachment line is realized with this particular harmonic-

source generator.

In �gures 8 and 9, three-dimensional simulation results on the attachment line are com-

pared with previous two-dimensional simulation results by Joslin (1994). Figure 8 clearly

shows a signi�cant amplitude disparity between the two- and three-dimensional results.

Because the three-dimensional simulations contain a 
ow-acceleration velocity component

(w), an additional degree of freedom is available to disperse (or absorb) energy. Hence,

the harmonic-source generator forces less energy into the attachment-line velocity compo-

nent (u). The two-dimensional and three-dimensional (normalized by the two-dimensional

maximum of the u velocity) results are also shown in �gure 8 to enable a growth-rate com-

parison. The disturbance is slightly more destabilized in the full three-dimensional 
ow

than in the two-dimensional 
ow approximation. Similar qualitative di�erences are evident

when disturbance growth rates in quasi-parallel 
ow are compared with those in nonpar-

allel 
ows. Finally, normalized disturbance velocity pro�les are compared in �gure 9. The

shapes of the compared pro�les agree well. The results demonstrate that two-dimensional

simulations capture the qualitative features of the true three-dimensional 
ow; in addition,

because a third degree of freedom (w; z) is not present in the two-dimensional simulations,

amplitude information is overpredicted, and growth-rate information is underpredicted.

These results suggest that much larger disturbances will be required to generate subcriti-

cal disturbance growth in the three-dimensional 
ow (if subcritical growth is possible for
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a single discrete mode in a three-dimensional 
ow).

In the nonparallel theory of Hall et al. (1984), the z-dependent form for the 
ow-

accelerated velocity component (w) was a key assumption, which led to a system of ordinary

di�erential equations, rather than partial di�erential equations. This assumed form is

equivalent to the base-
ow form: W ! WoZ. Figure 10 shows the maximum amplitudes

of the 
ow-accelerated velocity component at X = 100, away from the attachment line.

For the present harmonic source, this z-dependent disturbance form assumed by Hall et al.

(1984) is realized in the simulation near the attachment line; however, because the harmonic

source has a �nite length, the disturbance behavior near the harmonic-source ends deviates

from the expected z dependence. The harmonic-source ends cause a perturbation to the


ow that is shown both in �gure 10 and in a top view of the 
ow in �gure 11. Similar

di�culties in disturbance initialization can be found in the experiments; however, the core

of the test region (i.e., the attachment line) is not signi�cantly contaminated by these end

e�ects.

4.2 The neutral-curve region

In parameter regimes near the neutral curve, �nite Reynolds number disturbance

modes are studied near the upper branch, the lower branch, and the critical point. Specif-

ically, the simulations are conducted (in the regions shown in �gure 3) to verify the non-

parallel theory of Hall et al. (1984).

For the upper branch, three simulations are performed to identify the neutral curve.

The harmonic-source disturbance generator is used to generate the quasi-two-dimensional

modes on the attachment line. For the Reynolds numberR = 684:2, the three-dimensional

simulation results are shown in �gure 12 for various frequencies. The upper branch of the

neutral curve is shown at the frequency ! = 0:1263; the nonparallel theory of Hall et al.

(1984) and the two-dimensional simulations of Joslin (1994) report that the upper branch
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is between ! = 0:1230 and ! = 0:1240. Although the two- and three-dimensional results

yield di�erent upper branch locations, the relative error, or di�erence, in the locations is

only about 2 percent. This di�erence may be attributed to the assumption that a two-

dimensional disturbance is generated from a three-dimensional harmonic source or that

the three-dimensional base 
ow does not support pure two-dimensional disturbances.

Near the critical-point region of the neutral curve, computations are made to verify

the critical point predicted by the nonparallel theory. Digitized data from the results of

Hall et al. (1984) indicate that the Reynolds number R = 580 and frequency ! = 0:1104

is the point furthest upstream at which an in�nitesimal, two-dimensional disturbance be-

comes unstable. Although this value is not the exact critical point, this Reynolds num-

ber/frequency combination lies on the neutral curve in the region of the critical point. The

computational results for disturbances in this critical-point region are shown in �gure 13.

The three-dimensional results suggest that for the frequency of ! = 0:1104, the Reynolds

number for neutral stability is slightly greater than R = 585. This leads to less than 1

percent di�erence between the nonparallel theory and the simulation results.

Finally, �gure 14 shows results from simulations performed in the vicinity of the lower

branch of the neutral curve. The results indicate that for the Reynolds number R = 684:2

the lower branch of the neutral curve is approximately at the frequency ! = 0:082, which

agrees with nonparallel theory.

For practical engineering purposes, the nonparallel theory of Hall et al. (1984)

agrees with the three-dimensional simulation results in the limit of in�nitesimal quasi-

two-dimensional disturbances that propagate along the attachment line.

4.3 Three-dimensional disturbances

To generate three-dimensional disturbances, the 
ow-acceleration length of the

harmonic-source generator is reduced to enable a more direct transfer of energy to the
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w velocity component. Disturbances computed in the parameter regime described by a

Reynolds number R = 570 and frequency ! = 0:1249 are shown in �gure 15. By reducing

the length of the original harmonic source from�44:2 < Z < 44:2 to �20:4 < Z < 20:4, the

generated disturbance is very similar to the previous quasi-two-dimensional disturbance.

However, by reducing the harmonic-source length to �13:4 < Z < 13:4 (one-third of the

original length), the generated disturbance is signi�cantly stabilized on the attachment

line. The evolution no longer represents a quasi-two-dimensional disturbance and becomes

more comparable to a harmonic point source. Two-dimensional instabilities are apparently

dominant on the attachment line.

Next, a harmonic-source generator is used to introduce a disturbance o� the attach-

ment line to determine the direction and rate of instability growth or decay. The results of

a disturbance generated with a harmonic source located at �27:8 < Z < 0:0 are shown in

�gure 16. The top view indicates that the harmonic source generates a circular patterned

disturbance that evolves along the attachment line with spreading both away from and

toward the attachment line. These results suggest that the 
ow-accelerated shear away

from the attachment line has insu�cient strength to deter the spreading of the disturbance

toward the attachment line. Figure 16 also shows that the maximum-amplitude u veloc-

ity on the attachment line initially undergoes a slight decay and then continues to grow.

The amplitude information along the attachment line suggests that an unstable mode is

observed in the simulations; however, the top view of the 
ow �eld indicates that this

ampli�cation is caused by the wave spreading phenomenon. The combined amplitude and

visual results imply that a disturbance generated o� (but near) the attachment line can

supply energy to the attachment region by the spreading of the wave pattern. In turn, this

energy supply may feed an unstable mode on the attachment line.

For the �nal simulation in this section, the Reynolds number R = 684:2 and the

frequency ! = 0:1150 are used because the nonparallel theory predicts that in�nitesimal
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two-dimensional disturbances are unstable on the attachment line. The disturbance is

generated with a harmonic source which is positioned at �35:6 < Z < �6:6 (i.e., com-

pletely o� the attachment line). The top view of the computed disturbance is shown in

�gure 17. The harmonic source has generated a disturbance with a circular pattern. As

before, the disturbance evolves primarily along the attachment line, and the wave spreads

both away from and toward the attachment line. Streamlines and vortex lines (determined

by computing the trace of velocity and vorticity vectors) are overlaid on the disturbance

pattern. These lines yield valuable information on the mean-
ow �eld properties near the

attachment line. The disturbance packet follows the streamlines, and the packet spreads

and evolves near the attachment line in a manner similar to packets in 
at-plate boundary-

layer 
ows. These results and the quasi-two-dimensional results suggest that the behavior

of instabilities in the region on and near the attachment line can be expected to be quali-

tatively similar to 
at-plate boundary-layer instabilities. Supporting this postulation, the

trace of velocity vectors in the wall-normal/
ow-acceleration plane are shown at the top of

�gure 17. The resulting pattern in a reference frame moving with the disturbance velocity

is reminiscent of Kelvin cat's eyes, which are observed in the two-dimensional 
at-plate

boundary-layer 
ow.

The amplitudes of the disturbance at various Z locations are shown in �gure 18.

The disturbance has a peak amplitude initiated at Z = �20:4 and undergoes a strong

decay along the attachment line, although the mode is predicted to be unstable on the

attachment line. The spread of the disturbance toward the attachment line indicates that

the disturbance on the attachment line is either unstable or merely gaining energy at a

rate comparable to the spreading rate. However, because the theory for two-dimensional

disturbances indicates that the disturbance is unstable on the attachment line, some com-

bination of energy transfer due to spreading and linear growth is likely. However, the more

stable three-dimensional modes may rob the two-dimensional mode of enough energy to
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prevent 
ow transition along the attachment line. Note that the u velocity components at

all Z locations indicate increased amplitudes with along the attachment line, except for

the Z = �20:4 location which indicates decay. Spreading causes the other Z locations to

receive energy, but because the Z = �20:4 location was the location of maximum initial

amplitude and because the disturbance propagates along and away from the attachment

line, the location of the maximum velocity is no longer at Z = �20:4. This results in an

observed decay at the Z = �20:4 station. Figure 19 shows velocity pro�les at various Z

locations at X = 100. As energy is transferred because of this spreading, the pro�les near

the attachment line undergo a distortion near the wall. This distortion leads to multiple

maximums and pro�le shapes that deviate from the linear theory.

4.4 Suction and blowing e�ects

By changing the boundary conditions in equation (7) from � = 0, steady suction

(� < 0) or blowing (� > 0) can be used to alter the growth or decay of disturbances in

the attachment-line boundary-layer 
ow. Near the upper branch of the neutral curve, the

Reynolds number R = 684:2 and frequency ! = 0:1230 are used for the simple test case of

linear stability with suction and blowing. Shown in �gure 20, the results of the quasi-two-

dimensional disturbance generated with the elongated harmonic source (�44:2 < Z < 44:2)

indicate that suction stabilizes the disturbance and blowing destabilizes the disturbance,

which agrees with the theoretical results by Hall et al. (1984) and the two-dimensional

simulation results by Joslin (1994).

The results for the three-dimensional disturbance generated with a harmonic source

of length �35:6 < Z < �6:6 at the Reynolds number R = 684:2 and frequency ! =

0:1150 indicated growth in the energy on the attachment line (Figs. 17-19). Because two-

dimensional disturbances, which correspond to this Reynolds number and frequency, are

linearly unstable on the attachment line, the presence of energy should lead to instability
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growth. Computations with suction are used to stabilize the disturbance on and near the

attachment line. Clearly, �gure 21 shows that suction stabilizes the disturbances located

both on and o� the attachment line.

4.5 Region of subcritical disturbance growth

The weakly nonlinear theory and Fourier-based simulations by Hall & Malik (1986)

reveal that a region of nonlinear subcritical growth exists for large-amplitude disturbances

that evolve on the attachment line of a three-dimensional boundary-layer 
ow. The inde-

pendent two-dimensional spatial direct numerical simulation study by Joslin (1994) con-

�rmed this region of subcritical growth. Because the present results shown in �gure 8 indi-

cate that much larger harmonic-source amplitudes are required to initiate large-amplitude

disturbances and because of the large computational costs involved to resolve this nonlin-

ear phenomenon, three-dimensional simulations of large-amplitude (potentially subcritical)

instabilities will not be attempted in this paper.

5. Concluding remarks

In this paper, the results of three-dimensional spatial direct numerical simulations

of attachment-line instabilities in swept Hiemenz 
ow are presented. A computational

approach was described, which permits simulations of disturbances that evolve in 
ows

where the periodic assumption is invalid.

Small-amplitude quasi-two-dimensional disturbances, computed in a quasi-parallel

base 
ow, were shown to grow and decay in agreement with two-dimensional linear stabil-

ity theory. For complete swept Hiemenz 
ow, disturbances are destabilized in comparison

with those from both linear stability theory and two-dimensional simulation results.

The neutral-curve location predicted by the nonparallel theory of Hall et al. (1984)

agreed well with the three-dimensional simulation results in the limit of in�nitesimal quasi-
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two-dimensional disturbances, which propagate along the attachment line. Furthermore,

the e�ects of both steady suction and blowing on small-amplitude disturbances were doc-

umented with direct numerical simulation. In agreement with the results of Hall et al.

(1984), suction stabilizes small-amplitude disturbances, and blowing destabilizes these dis-

turbances.

For the parameter regions studied here, instabilities that are generated from harmonic

sources located o� the attachment line spread both toward and away from the attachment

line. Because of this spreading, energy from the initial disturbance is transferred to the

attachment-line instabilities; however, suction stabilizes these instabilities. Disturbance

packets generated near the attachment line follow the streamlines, and the packets spread

and evolve near the attachment line in a manner similar to packets in 
at-plate boundary-

layer 
ows. Hence, instabilities in the region on and near the attachment line can be

expected to be qualitatively similar to 
at-plate boundary-layer instabilities.

Although the present study has demonstrated that instabilities generated o� the

attachment-line can spread and feed energy to attachment-line modes, the results do

not indicate which modes receive this energy or whether these modes are unstable. A

parameter study would provide this important information. Because of the signi�cant

computer resources required for the nonlinear three-dimensional Navier-Stokes computa-

tions, a parameter study could not be performed for the range of three-dimensional viscous

instabilities. Such a study was conducted in a more recent study by Lin & Malik (1994).

From the three-dimensional linear computations by Lin & Malik (1994), unstable insta-

bilities in addition to the dominant two-dimensional wave were discovered by permitting

nonuniformities in the 
ow-acceleration direction (Z). They showed that both asymmetric

and symmetric modes, which have phase di�erences with distance from the attachment

line, can be unstable depending on the Reynolds number. Although these new modes

are linearly stable in the subcritical region outlined by Hall and Malik (1986), perhaps
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some combination of small (but �nite) amplitude modes may initiate the critical Reynolds

number to decline in a manner similar to the trend suggested by the nonlinear subcriti-

cal growth predicted by Hall & Malik (1986). Because Hall & Malik considered only the

two-dimensional, uniform symmetric mode, very large amplitudes (12 percent of mean)

were required to initiate this subcritical growth. With the discovery of these new modes,

the required amplitudes for subcritical growth may feasibly be generated by very small

discontinuities (e.g., the accumulation of debrie on the wing) across the attachment line.

Further investigation of these nonuniform asymmetric modes should be pursued. A subse-

quent study by Lin and Joslin is currently underway to explore the nonlinear interaction

of these nonuniform asymmetric and symmetric modes.

Swept Hiemenz 
ow serves as a very good model for studying transition mecha-

nisms related to swept-winged transition because both traveling-wave instabilities along

the attachment-line may be studied and stationary and traveling cross
ow-vortex insta-

bilites can be studied in the 
ow-acceleration direction (over the wing chord). Such a study

could potentially link a receptivity mechanism which causes waves along the attachment

line with streamwise vorticity in the 
ow-acceleration direction.
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Figure 1. Sketch of attachment-line region of swept Hiemenz 
ow.
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Figure 2. Neutral curve, experimental regions of instability growth, and theoretical region

of subcritical growth in attachment-line boundary layer.
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Figure 3. Neutral curves, region of subcritical instability growth, and sample points for

DNS in attachment-line boundary layer.
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Figure 4. Side and top view of three-dimensional traveling wave in attachment-line bound-

ary layer.
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Figure 5. Simulated two-dimensional instability evolution in parallel base-
ow approx-

imation (V = 0) and in three-dimensional attachment-line base 
ow for R = 570 and

! = 0:1249.
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Figure 6. Flow-acceleration variation of simulated two-dimensional instability evolution in

three-dimensional attachment-line base 
ow for R = 570 and ! = 0:1249.
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Figure 7. Comparison of three-dimensional disturbance velocity pro�les at X = 100 near

attachment line at R = 570 and ! = 0:1249.
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Figure 8. Comparison of two- and three-dimensional disturbance evolutions in three-

dimensional attachment-line boundary layer for R = 570 and ! = 0:1249.
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Figure 9. Comparison of normalized two- and three-dimensional disturbance velocity pro-

�les at X = 100 in attachment-line boundary layer at R = 570 and ! = 0:1249.
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Figure 10. Maximum 
ow-accelerated disturbance velocity (w) with distance from attach-

ment line at X = 100, R = 570, and ! = 0:1249.
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X

Figure 11. Evolution of 
ow-accelerated disturbance velocity (w) in attachment-line

boundary layer at R = 570 and ! = 0:1249. (Disturbance generated between X = 16

and 19.)
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Figure 12. Instability growth and decay near branch II of curve of neutral stability for

attachment-line boundary layer at R = 684:2.
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Figure 13. Instability growth and decay near critical point of curve of neutral stability for

attachment-line boundary layer at ! = 0:1104.
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Figure 14. Instability growth and decay near branch I of curve of neutral stability for

attachment-line boundary layer at R = 684:2.
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Figure 15. Evolution of disturbances in attachment-line boundary layer at R = 570 and

! = 0:1249, where disturbances are generated with harmonic sources of various lengths.
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Figure 16. Evolution of disturbance velocity (u) on attachment line, and top view of three-

dimensional traveling wave in attachment-line boundary layer at R = 570 and ! = 0:1249.
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Figure 17. Top view of disturbance evolution in attachment-line boundary layer at

R = 684:2 and ! = 0:1150, where disturbance is generated with harmonic source near

attachment line.
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Figure 18. Evolution of disturbance generated o� attachment line in attachment-line

boundary layer at R = 684:2 and ! = 0:1150.
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Figure 19. Comparison of three-dimensional disturbance velocity pro�les at X = 100 near

attachment line at R = 684:2 and ! = 0:1150.
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Figure 20. E�ect of suction and blowing on growing instability modes in attachment-line

boundary layer at R = 684:2 and ! = 0:1230.
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Figure 21. E�ect of suction on evolution of disturbance generated o� of attachment line

in attachment-line boundary layer at R = 684:2 and ! = 0:1150.
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